AI Agents Overview
Understanding the different types of AI agents in Fabric and when to use each one.
Fabric AI includes multiple specialized agents, each designed for specific tasks. This guide helps you understand which agent to use and how they work together.
What is an Agent?
An AI agent is an autonomous system that can:
- Understand — Interpret your requests and context
- Plan — Break down complex tasks into steps
- Execute — Perform actions like generating documents or calling APIs
- Learn — Improve from feedback and past executions
Unlike simple chatbots, agents can take actions, use tools, and complete multi-step workflows.
Agent Types
Fabric provides several types of agents:
┌─────────────────────────────────────────────────────────────────┐
│ Fabric AI Agents │
├─────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────────────────────────────────────────────┐ │
│ │ FABRIC ORCHESTRATOR │ │
│ │ Routes tasks to the right specialized agent │ │
│ └──────────────────────────────────────────────────────────┘ │
│ │ │
│ ┌───────────────────┼───────────────────┐ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Document │ │ CUGA │ │ Custom │ │
│ │ Generator │ │ (General AI) │ │ Agents │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────┘Fabric Orchestrator
The intelligent coordinator that routes your requests to the right agent or tool.
Best for:
- Complex multi-step tasks
- Tasks requiring multiple tools
- When you're not sure which agent to use
- Workflow automation
Capabilities:
- Semantic routing to find the best executor
- Task decomposition and planning
- MCP tool execution
- Agent delegation via A2A protocol
- Trust-based approval workflows
- Memory and learning from past executions
Learn more about the Orchestrator →
Document Generator
A specialized agent for creating structured documents.
Best for:
- PRDs and product documentation
- Technical specifications
- Architecture documents
- User stories and acceptance criteria
- API documentation
Capabilities:
- Multiple document templates
- RAG context integration
- Real-time streaming with diff highlighting
- Confirm/reject workflow for changes
- Export to PDF, DOCX, Markdown
Learn more about Document Generation →
CUGA (Configurable Generalist Agent)
A powerful generalist agent for complex automation.
Best for:
- Browser automation and web scraping
- Complex API orchestration
- Multi-step workflows
- Tasks requiring code execution
- Autonomous task completion
Capabilities:
- Full Playwright browser automation
- Sandboxed code execution
- Screenshot analysis
- Human-in-the-loop approvals
- Memory system for learning
Custom Agents
Create your own agents for specific workflows.
Best for:
- Organization-specific processes
- Unique document types
- Custom integrations
- Specialized domains
Capabilities:
- Custom prompts and instructions
- Configurable MCP tools
- Custom approval workflows
- Template-based creation
Learn how to create custom agents →
Choosing the Right Agent
| Task | Recommended Agent | Why |
|---|---|---|
| Generate a PRD | Document Generator | Optimized for structured documents |
| Create 10 Jira tickets from PRD | Orchestrator | Multi-step with MCP tools |
| Scrape competitor websites | CUGA | Browser automation needed |
| Generate weekly report | Custom Agent | Organization-specific format |
| "Just help me with X" | Orchestrator | Routes automatically |
How Agents Work
1. Request Understanding
When you send a message:
User: "Create a PRD for user authentication with OAuth support"
│
▼
┌─────────────────────────────────────────────────────────┐
│ Request Analysis │
│ • Task type: Document generation │
│ • Document type: PRD │
│ • Key topics: Authentication, OAuth │
│ • Complexity: Medium │
└─────────────────────────────────────────────────────────┘2. Context Retrieval
The agent gathers relevant context:
┌─────────────────────────────────────────────────────────┐
│ Context Sources │
│ • Project workspace documents │
│ • Previous project documents │
│ • Organization knowledge base │
│ • Past similar requests │
└─────────────────────────────────────────────────────────┘3. Planning
For complex tasks, the agent creates a plan:
┌─────────────────────────────────────────────────────────┐
│ Execution Plan │
│ Step 1: Retrieve auth-related documents │
│ Step 2: Generate PRD outline │
│ Step 3: Expand each section │
│ Step 4: Add acceptance criteria │
│ Step 5: Review and format │
└─────────────────────────────────────────────────────────┘4. Execution
The agent executes each step:
- AI generation — Call LLM to generate content
- Tool calls — Execute MCP tools if needed
- Validation — Check output quality
- Streaming — Send updates to user in real-time
5. Learning
After completion:
- Record what worked and what didn't
- Update memory for future requests
- Improve routing accuracy
Agent Communication
A2A Protocol
Agents communicate using the Agent-to-Agent (A2A) protocol:
Orchestrator Document Generator
│ │
│─── Discover capabilities ───────>│
│<── Agent manifest ───────────────│
│ │
│─── Task: Generate PRD ──────────>│
│<── SSE: Progress updates ────────│
│<── SSE: Content chunks ──────────│
│<── Result: Complete document ────│
│ │AG-UI Protocol
Agents communicate with the UI using the AG-UI protocol:
- State deltas — Real-time state updates
- Tool calls — Visibility into agent actions
- Streaming — Token-by-token generation
- Approvals — Human-in-the-loop requests
Multi-Agent Workflows
The Orchestrator can coordinate multiple agents:
Request: "Create a PRD, then generate Jira stories"
│
▼
┌───────────────────┐
│ Orchestrator │
│ (Coordinator) │
└───────────────────┘
│
┌───────────┴───────────┐
│ │
▼ ▼
┌──────────────┐ ┌──────────────┐
│ Document │ │ Jira MCP │
│ Generator │──────>│ Tools │
└──────────────┘ └──────────────┘
(Step 1) (Step 2)
│
▼
Stories created in JiraAgent Configuration
Model Selection
Choose which AI model the agent uses:
- GPT-4 — Complex reasoning, code generation
- Claude 3.5 Sonnet — Long documents, nuanced content
- GPT-3.5 Turbo — Fast, cost-effective
Temperature
Control output creativity:
- 0.0 — Deterministic, consistent
- 0.7 — Balanced (default)
- 1.0 — Creative, varied
System Prompts
Customize agent behavior with prompts from your library.
MCP Tools
Enable specific tools for the agent:
- GitHub, Jira, Slack integrations
- Custom API endpoints
- Database queries